数据分析常用的知识点— 假设检验
何为假设检验?假设检验是对总体参数做一个尝试性的假设,该尝试性的假设称为原假设,然后定义一个和原假设完全对立的假设叫做备选假设。其中备选假设是我们希望成立的论断,原假设是我们不希望成立的论断。
假设检验涉及讨论的内容有:
1. 总体均值的检验:σ已知和σ未知情形
2. 总体比率的假设检验:σ已知和σ未知道
但是下面主要讨论在σ已知情形下,总体均值的检验,其他的根据区间估计中的证明和下面的例题都能很方便的理解出来。
总体均值的检验:
σ已知情形
准备一道例题,通过例子说明思路
质检机构检查某品牌咖啡的标签上显示装有3磅咖啡,现在质检机构需要确定每罐咖啡的质量至少有三磅,以保证消费者权益。已知道σ=0.18,现在取得n=36罐咖啡组成一个随机样本,计算出(x拔)=2.92
开始解答了:
1. 首先我们明白想要的结果是证明u<3,所以就提出了原假设和备选假设如下:h0:u>=3;Ha:u<3
2. 其中我们在检验的过程允许以1%的可能性犯错误也即是 α=0.01
3. 由于样本n=36,σ=0.18,所本均值的抽样分布是服从正态概率分布
4. 所以当(x拔)=2.92时,z=-2.67
5. 因为原假设u是大于等于3的,所以我们就观察z小于或等于-2.69的值,让p值等于检验统计值z小于或等于-2.69的概率;利用标准正态概率表,z=-2.69时,p值=0.0038
其中我们可以这样理解z小于或者等于-2.69的概率p=0.0038这一事件的发生概率是非常的小,又加上允许犯错的概率是0.01(也即是发生的概率是0.01结果是非常小的,我直接忽略了)。
所以我们直接认为z小于或者等于-2.69这一事件太小以至于我们认为他是不发生的。所以我们拒绝了H0:u>=3这一假设。所以,在0.01的显著水平下有足够的统计证据拒绝H0。
暂无评论